
A White Paper
Presented by IPextreme

The Host View of a FlexRay System September 2006

FlexRay Message Buffers

Bill Rogers and Stefan Schmechtig
IPextreme, Inc.

In a FlexRay node, message buffers are the means by
which the application can decouple its message
transmission and reception from the actual FlexRay
protocol, allowing asynchronous operation of the
application with respect to the timing of FlexRay bus.

In this paper, we discuss the implementation,
configuration, and use of transmit and receive message
buffers in an example FlexRay node.

HIGHLIGHTS
 Hardware implementation

 Software configuration

 Transmit and receive examples

 Receive FIFOs

 WHITE PAPER FlexRay Message Buffers Page 2

ABSTRACT
The message buffer concept essentially enables the application associated
with a FlexRay node to:

• Place data to be transmitted into a region of shared memory and know
that the corresponding FlexRay frame will be transmitted on the
FlexRay bus in its assigned slot.

• Respond to a notification that a valid FlexRay frame has been received
and retrieve the corresponding data from its assigned region of shared
memory.

Setting up the message buffers in a FlexRay node involves implementing the
required hardware and developing application software to configure, control,
and monitor the message buffers according to the communication needs of
the target system. Planning for these activities requires an understanding of
how message buffers work.

TABLE OF CONTENTS
STRUCTURE OF A TYPICAL FLEXRAY NODE 3
REVIEW OF FLEXRAY TIMING HIERARCHY 4

Communication Cycle ... 5
Static Segment .. 5
Dynamic Segment ... 6
Symbol Window... 7
Network Idle Time (NIT) .. 7
Time Units ... 7
Frame ID ... 8

MESSAGE BUFFER OVERVIEW.. 9
TRANSMIT MESSAGE BUFFER SETUP.. 10
MESSAGE TRANSMISSION ... 14
RECEIVE MESSAGE BUFFER SETUP... 18
MESSAGE RECEPTION.. 22
RECEIVE FIFO... 22
MESSAGE BUFFER LOCKING ... 23
INTERRUPTS... 23
SUMMARY ... 24

 WHITE PAPER FlexRay Message Buffers Page 3

STRUCTURE OF A TYPICAL FLEXRAY NODE
Figure 1 shows the structure of a typical FlexRay node connected in a 5-
node FlexRay cluster using a dual-channel bus topology. (Star-based
topologies and single-channel implementations are also possible, as are
combinations of both in the same cluster. However, the focus of this
discussion is on the FlexRay protocol timing and the purpose/implementation
of message buffers.)

In a typical FlexRay node, there is:

• An electronic control unit (ECU) and other application-specific
hardware. For example, the node may be a sensor or actuator in an
automotive system.

• A FlexRay Communication Controller

• A FlexRay bus driver for each implemented FlexRay channel

• Memory that is shared between the application ECU and the FlexRay
Communication Controller

Node B Node C Node D Node E

Application
ECU

Shared
Memory

Other
Application

Logic

Channel A
Bus Driver

Channel B
Bus Driver

Node A

Channel A

Channel B

Protocol EngineFlexRay
Communication

Controller CHI

Figure 1. Example FlexRay Cluster

 WHITE PAPER FlexRay Message Buffers Page 4

Within the FlexRay Communication Controller, there are two main blocks:

• The FlexRay Protocol Engine implements the majority of the FlexRay
protocol including transmitting and receiving frames, maintaining clock
synchronization with other nodes in the cluster, and generating and
checking CRC.

• The Controller Host Interface (CHI) provides the application with the
means to:

• Configure, control, and monitor the Protocol Engine.

• Exchange the message data and status between the application
and the Protocol Engine. Message exchange is accomplished
through a set of message buffers implemented in the node; each
message buffer is assigned to a slot in the FlexRay bus timing
heirarchy.

The FlexRay Communication Controller must provide the application with the
means to configure, control, and monitor the message buffers used for
message transmission and reception. A well-designed FlexRay
Communication Controller will typically implement the configuration, control,
and status registers for the message buffers in the CHI and use a region of
the shared memory to store the actual transmit/receive frame header,
payload data, and slot status data associated with the configured message
buffers.

A FlexRay Communication Controller implemented as a reusable IP block
should provide a hardware configuration option to allow you to choose the
number of message buffers to implement. This allows you to optimize the
size of the core and size of the required shared memory to the number of
message buffers that are required for the application.

REVIEW OF FLEXRAY TIMING HIERARCHY
To understand the relationship between message buffers and frames
transmitted and received through the FlexRay protocol, it is first important to
review the FlexRay timing hierarchy. Figure 2 shows the fundamental timing
of the FlexRay protocol.

Note: In the following discussions, the names of FlexRay variables (defined
in FlexRay Communications Protocol Specification, Version 2.1, Revision A)
are shown in italics.

 WHITE PAPER FlexRay Message Buffers Page 5

0 1 2 3 4 5 62 63
communication

cycle level

time

1 2

static segment dynamic segment symbol window NIT

n n+1 n+2 m

static slots minislots
arbitration grid

level

macrotick
level

microtick
level

Figure 2. FlexRay Timing Hierarchy

Communication Cycle
FlexRay communication is based on a recurring sequence of 64
communication cycles numbered from 0 to 63.

Each node in the cluster keeps track of the current cycle count independently
in a local variable called vCycleCounter, which counts from 0 to 63, then
resets to 0 and repeats. Although each node tracks the cycle count
independently, the current cycle count is the same for all nodes in the
cluster.

The duration of a communication cycle is gMacroPerCycle macroticks.
gMacroPerCycle is a global parameter for the cluster. Macroticks (defined
later in this article) are the common unit of time used throughout the cluster.

Each communication cycle is divided into segments.

Static Segment
The static segment is present in every communication cycle and is used for
time-triggered communication (TDMA-based communication scheme based
on statically assigned communication slots).

 WHITE PAPER FlexRay Message Buffers Page 6

The number of slots in the static segment (static slots) is determined by the
cluster-wide configuration parameter gNumberOfStaticSlots, which has a
minimum value of 2. There are always at least two static slots in the static
segment for each channel.

All static slots are of the same time duration, as determined by the cluster-
wide parameter gdStaticSlot.

Each node in the cluster keeps track of the current slot count in the FlexRay
state variable vSlotCounter on a per-channel basis (vSlotCounter for channel
A and vSlotCounter for channel B). In the static segment, the current slot
count is always the same for channel A and channel B, since the number of
slots and slot time duration are the same for each channel.

The payload size for each slot in the static segment (0–254 bytes) is
determined by cluster-wide configuration parameter gPayloadLengthStatic.
Every slot has the same payload length; if a transmitter has less than
gPayloadLengthStatic two-byte words to transmit in a static slot, it can use
padding to fill the remaining bytes in the transmitted frame.

Dynamic Segment
The dynamic segment is optionally present in the communication cycle and
is used for ad-hoc, event-driven communication. In the dynamic segment,
there are a configurable number of minislots as determined by cluster-wide
configuration parameter gNumberOfMinislots. If gNumberOfMinislots is 0,
there is no dynamic segment in the communication cycle. Numbering of
minislots in the dynamic segment continues from the last slot number in the
static segment. For example, if the last static slot is slot number 9, then the
first minislot in the dynamic segment is minislot number 10.

All minislots are of the same number of macroticks as determined by cluster-
wide parameter gdMinislot.

A dynamic communication slot occurs only if communication begins within a
minislot in the dynamic segment. The width of a dynamic slot depends on the
size of the payload in the associated frame. The maximum payload length in
the dynamic segment is also 254 bytes. However, the actual transmitted
payload length can vary from one dynamic slot to another.

 WHITE PAPER FlexRay Message Buffers Page 7

Symbol Window
The symbol window is optionally present in the communication cycle and is
used to transmit FlexRay-defined symbols. The duration of the symbol
window is determined by cluster-wide parameter gdSymbolWindow
(measured in macroticks). If gdSymbolWindow is 0, there is no symbol
window in the communication cycle.

Network Idle Time (NIT)
The NIT is used by each node to calculate and apply clock correction. The
duration of the NIT in macroticks is the communication cycle time minus the
number of macroticks used by the static segment, dynamic segment, and
symbol window.

The FlexRay timing parameters mentioned above are cluster (global)
parameters with values that are statically set when the cluster is configured.

0 1 2 3 4 5 62 63
communication

cycle level

time

0 1 2 3 4 5 n-1 nmacrotick level

gdCycle

0 1 2 3 4 5microtick level

gdMacrotick

vCycleCounter

vMacrotick

vMicrotick

cCycleCountMax

gMacroPerCycle - 1

pdMicrotick

cluster-wide
synchronization

node-specific
timing

Figure 3. FlexRay Macrotick Timing

Time Units
As shown in Figure 3, two time units form the fundamental basis for
measuring time in the FlexRay cluster:

• Macrotick: The basic unit of time by which the length of the higher-order
time spans are measured:

• Each static slot is gdStaticSlot macroticks in duration.

• Each minislot in the dynamic segment is gdMinislot macroticks in
duration.

 WHITE PAPER FlexRay Message Buffers Page 8

• The symbol window is gdSymbolWindow macroticks in duration.

• Length of a communication cycle is gMacroPerCycle macroticks.

• The current macrotick count is maintained in each node by the
variable vMacrotick.

• The absolute duration of a macrotick is determined by the
parameter gdMacrotick, which is the same for all nodes in a cluster
and has a range of 1-6 μs.

• Microtick: The local unit of time as derived directly from the node’s local
oscillator with an optional prescalar. For example, a node that samples
FlexRay bus data on an 80-MHz clock, and does not use a prescalar,
for microtick timing would have a microtick duration (pdMicrotick) of
12.5 ns. The duration of a microtick varies from node to node.

The duration of each macrotick at the node level is in units of
microticks. Therefore, the number of microticks per macrotick
(pMicroPerMacroNom) can vary from node to node. Within a node, the
number of microticks within a macrotick can vary from macrotick to
macrotick as the node attempts to keep the average duration of each
macrotick as close as possible to gdMacrotick. This variance of
microticks per macrotick at the node level is the mechanism by which
the global view of time (as seen in macroticks) remains consistent
throughout the cluster even though the microtick duration varies from
node to node.

The various dependencies between the FlexRay timing hierarchy related
parameters are explained further in the FlexRay specification. In addition,
there is FlexRay system development software available to help you define
the communication schedule for a FlexRay system, calculate the associated
FlexRay parameters, and model the effects of various parameter values and
combinations. For the purpose of explaining how message buffers work, the
important elements of the FlexRay timing hierarchy to understand are the
static and dynamic slots because it is in the static and dynamic slots that the
FlexRay frames stored in the message buffers are transmitted and received
through the FlexRay bus.

Frame ID
Another important concept to highlight when discussing slot timing is Frame
ID. Although Frame ID is not an element of the FlexRay timing hierarchy, it is
related because it determines the slot in which a frame (contained in a
message buffer) will be transmitted on the FlexRay bus.

 WHITE PAPER FlexRay Message Buffers Page 9

Frame ID is therefore part of the fundamental connection between the host
view of message transmission and reception (message buffers) and the slot
timing of the FlexRay protocol.

MESSAGE BUFFER OVERVIEW
The CHI in a FlexRay Communication Controller serves two main purposes:

• Protocol data interface: Exchanges protocol-related control,
configuration, and status data between the host and the FlexRay
protocol.

• Message data interface: Exchanges messages and message-related
control, configuration, and status data between the host and the
FlexRay protocol. The message data interface implements the
message buffer concept.

The specification identifies several services that the CHI must provide with
regard to transmit and receive message buffers, but does not impose rigid
requirements regarding the implementation method. As a designer, you have
the choice to implement the FlexRay Communication Controller as a new
design or integrate a pre-designed FlexRay Communication Controller, either
as a chip or as an IP core.

The FlexRay Communication Controller solutions available today generally
implement the message buffers as shown in Figure 4, where the host has
access to the message buffer configuration, control, and status registers
through the Controller’s host interface, and both the host and the Controller
access the message buffer header, payload, and status stored in a shared
memory.

To set up a message buffer scheme for the system (or a node in the system)
using a typical FlexRay Communication Controller implementation, you
would need to:

• Plan the communication needs of the system, such as what types of
messages need to be communicated between the various nodes.

• Determine the characteristics of the messages such as whether the
messages should be transmitted in the static segment or dynamic
segment and on which channel(s), and the required payload sizes.

• Configure the message buffers in the node to achieve the required
functionality. This includes setting up the message buffer registers and
allocating the required shared memory for the message data.

 WHITE PAPER FlexRay Message Buffers Page 10

Application
ECU

Shared
Memory

FlexRay
Communication

Controller
Host access to message buffer configuration,

control, and status registersHost
Interface

Memory
Interface

Protocol
Engine

CHI

Channel A/B
Transmit
Frames

Channel A/B
Receive
Frames

Receive Frames
Header and Payload

Transmit Frames
Header and Payload

Slot Status

Receive Frames
Header and Payload

Transmit Frames
Header and Payload

Slot Status

Figure 4. Example Message Buffer Data Exchange

For an IP core, some of the message buffer configuration is done at the
hardware configuration stage. For example, you may be able to choose the
maximum number of message buffers to be implemented and the maximum
payload size to be supported. However, most of the message buffer
configuration, such as assigning message buffers to slots and channels,
selecting transmit or receive, and setting up cycle count filtering, is done
when the cluster is initialized, during the configuration stage of the FlexRay
protocol. Some re-configuration of the message buffers is also possible after
the FlexRay protocol has transitioned from the configuration state to the run
state.

TRANSMIT MESSAGE BUFFER SETUP
Message transmission (host to protocol) occurs on non-queued buffers,
defined in the specification as meaning that the transmit message buffer has
the following characteristics:

• Host has read/write access to transmit message buffer data.

• Protocol has read access to transmit message buffer data.

• New data replaces old data in the message buffer.

 WHITE PAPER FlexRay Message Buffers Page 11

It is also possible to implement a queued transmit buffer scheme, such as is
done in the FRCC2100 FlexRay Communication Controller, in which a 2-
stage transmit queue is used to allow simultaneous access to the transmit
message buffer from both the application and the FlexRay protocol.

The implementation of a transmit message buffer consists of two parts:
The FRCC2100 FlexRay
Communication Controller
is the IP core used in the
FlexRay Communication
Controller module from
Freescale Semiconductor,
Inc. and is available as a
soft IP core from
IPextreme, Inc.

• Storage for the required message buffer configuration, control, and
status data. This storage is typically implemented as host-accessible
registers in the CHI.

• A region of shared memory allocated to the message buffer, the size of
which depends on the maximum payload size of the message buffer.
The shared memory stores the message header, payload data, and
(typically) the slot status.

Assuming the required hardware is implemented already, setting up the
transmit buffer is then a matter of programming the required configuration
data into the message buffer configuration, control, and status registers in
the CHI. The configuration data required for a transmit message buffer
includes:

• Frame ID: Corresponds to the slot number in which the message will be
transmitted. Whether the selected slot is a static or dynamic slot
depends on how many static slots are configured.

• Channel: For static slots, a message buffer can be assigned to channel
A or channel B or channels A and B. For dynamic slots, a message
buffer can be assigned to channel A or B, but not both A and B.

For each transmit buffer, the CHI must also provide a means for the host to
access the following control and status information:

• Data valid: An indication from the host that the transmit message buffer
contains data that is valid for transmission.

• Slot status: A set of specification-defined slot status bits made available
to the host from the CHI.

Other configuration information that may be implemented by a CHI includes:

• Cycle count filtering so that message transmission only occurs in the
assigned slot in the assigned communication cycle (used only in the
dynamic segment).

• Pointer to the location of the message header and payload data in the
shared memory.

 WHITE PAPER FlexRay Message Buffers Page 12

• State or event mode transmission, which determines whether the node
always transmits the valid data in each assigned slot or only when the
data has been updated since the last transmission of that message
buffer.

As a simple example, consider the cluster shown in Figure 1. Suppose that
nodes B, C, D, and E must send a critical message to node A once per
communication cycle; the message must be duplicated on channels A and B.
Suppose also that nodes B, C, D, and E must also send diagnostic
messages to node A on an ad-hoc basis (as requested by node A); separate
diagnostic messages are required for channels A and B on each node.
Nodes B, C, D, and E would then each require the following transmit buffer
setup:

• One transmit buffer assigned to the static segment, channels A and B

• One transmit buffer assigned to the dynamic segment, channel A

• One transmit buffer assigned to the dynamic segment, channel B

To transmit the diagnostics request message to each node, node A could
use:

• Four transmit buffers assigned to the dynamic segment, channel A (one
for each node)

• Four transmit buffers assigned to the dynamic segment, channel B (one
for each node)

Table 1 shows an example of the message buffer configuration data that
could be used for such a setup, assuming that the FlexRay protocol timing is
set up such that slot 10 is the first minislot in the dynamic segment (slots 1–9
are in the static segment). Note that:

• Nodes B, C, D, and E are each assigned a unique slot in the static
segment. This is a FlexRay requirement. In the static segment, no 2
nodes can be assigned the same transmit slot in the same
communication cycle.

• Slot 10, the first slot in the dynamic segment is used as a transmit slot
by all the nodes, but each node uses a different communication cycle.

• In node A, each transmit message buffer is assigned to dynamic slot
10. However, each transmit message buffer has a unique channel and
communication cycle assignment, so there will be no transmit conflicts
on Node A.

 WHITE PAPER FlexRay Message Buffers Page 13

• Nodes B, C, D, and E each use one transmit message buffer for its
respective channel A/B diagnostic messages. Again, there is no
transmit conflict because channels A and B are independent in the
dynamic segment and each node is assigned a different communication
cycle for its diagnostic messages.

In this example, node A could use an alternative approach by assigning a
single message buffer for transmitting the diagnostic request message. A
single message could be broadcast to all nodes to request their respective
diagnostic messages. Or, to target individual nodes, node A could still use a
single message buffer but embedded target node information in the Message
ID part of the transmitted frame. Receiving nodes B, C, D, and E could then
use Message ID filtering to accept only messages that they are intended to
receive. Message IDs are used only in the dynamic segment.

Table 1. Transmit Message Buffer Setup

Node A Node B Node C Node D Node E MB
No.

Frame ID: 10
Channel: A

Com. Cycle: 2
Purpose: Send

channel A
diagnostics request
message to node B

Frame ID: 1
Channel: A and B

Purpose: Send
periodic critical
data to node A

Frame ID: 2
Channel: A and B

Purpose: Send
periodic critical
data to node A

Frame ID: 3
Channel: A and B

Purpose: Send
periodic critical
data to node A

Frame ID: 4
Channel: A and B

Purpose: Send
periodic critical
data to node A

1

Frame ID: 10
Channel: B

Com. Cycle: 2
Purpose: Send

channel B
diagnostics request
message to node B

Frame ID: 10
Channel: A

Com. Cycle: 50
Purpose: Send

channel A
diagnostics data

message to node A

Frame ID: 10
Channel: A

Com. Cycle: 51
Purpose: Send

channel A
diagnostics data

message to node A

Frame ID: 10
Channel: A

Com. Cycle: 52
Purpose: Send

channel A
diagnostics data

message to node A

Frame ID: 10
Channel: A

Com. Cycle: 53
Purpose: Send

channel A
diagnostics data

message to node A

2

Frame ID: 10
Channel: A

Com. Cycle: 3
Purpose: Send

channel A
diagnostics request
message to node C

Frame ID: 10
Channel: B

Com. Cycle: 50
Purpose: Send

channel B
diagnostics data

message to node A

Frame ID: 10
Channel: B

Com. Cycle: 51
Purpose: Send

channel B
diagnostics data

message to node A

Frame ID: 10
Channel: B

Com. Cycle: 52
Purpose: Send

channel B
diagnostics data

message to node A

Frame ID: 10
Channel: B

Com. Cycle: 53
Purpose: Send

channel B
diagnostics data

message to node A

3

4

Frame ID: 10
Channel: B

Com. Cycle: 3
Purpose: Send

channel B
diagnostics request
message to node C

Not Used Not Used Not Used Not Used

 WHITE PAPER FlexRay Message Buffers Page 14

Table 1. Transmit Message Buffer Setup
MB
No. Node A Node B Node C Node D Node E

Frame ID: 10
Channel: A

Com. Cycle: 4
Purpose: Send

channel A
diagnostics request
message to node D

Not Used Not Used Not Used Not Used 5

Frame ID: 10
Channel: B

Com. Cycle: 4
Purpose: Send

channel B
diagnostics request
message to node D

Not Used Not Used Not Used Not Used 6

Frame ID: 10
Channel: A

Com. Cycle: 5
Purpose: Send

channel A
diagnostics request
message to node E

Not Used Not Used Not Used Not Used 7

Frame ID: 10
Channel: B

Com. Cycle: 5
Purpose: Send

channel B
diagnostics request
message to node E

Not Used Not Used Not Used Not Used 8

MESSAGE TRANSMISSION
Once the message buffer configuration has been set up and the FlexRay
protocol is in the running state, the host can transmit a message by:

1. Writing the message buffer header and data to the assigned location in
the shared memory.

2. Notifying the FlexRay Communication Controller that valid transmit data
is available for that message buffer.

 WHITE PAPER FlexRay Message Buffers Page 15

Before the beginning of the next slot in the static segment, the FlexRay
Communication Controller searches its message buffer configuration,
control, status registers for a match between the Frame ID and the next slot
number. If there is a match, the node transmits one of two frames on the
assigned channel(s) in the next slot:

• If valid transmit data exists for the message buffer with the matching
Frame ID and no implementation-specific transmit filtering prevents it,
the node transmits the valid transmit message on the assigned
channel(s). NXP (formerly Philips)

Semiconductor developed
sophisticated FlexRay e
models. They are available
in the FlexRay eVC kit from
IPextreme, Inc and can help
an integrator verify a custom
CHI implementation, test a
node configuration in a
simulated network, and help
ensure first time success in
FlexRay conformance
testing.

• If no valid transmit data exists for the message buffer with the matching
Frame ID or transmit message filtering prevents sending valid transmit
data, the node transmits a null frame in that slot on the assigned
channel(s).

In the dynamic segment, a similar Frame ID vs. slot number check occurs.
However, null frames are not transmitted in this case:

• If valid transmit data exists for the message buffer with the matching
Frame ID and no transmit filtering (such as cycle count filtering)
prevents it, the node transmits the valid transmit message on the
assigned channel.

• If no valid transmit data exists for the message buffer with the matching
Frame ID or transmit message filtering (such as cycle count filtering)
prevents sending valid transmit data, the node simply does not transmit
the message in that slot. No null frame is sent.

At the completion of every communication slot, the FlexRay Communication
Controller updates the corresponding slot status information to the host. The
means by which this is done is implementation-specific—for example, there
may be slot status registers in the Controller and/or the slot status can be
written to the shared memory associated with the message buffer.

The above scenarios assume that the node uses the state transmission
scheme. If the node uses the event transmission scheme, then transmission
of the valid frame depends on whether the application has updated the
message buffer data since it was last transmitted.

 WHITE PAPER FlexRay Message Buffers Page 16

Figure 4 shows the FlexRay bus activity for this transmit message buffer
setup. In this example:

• In nodes B, C, D, and E, the application updates the static slot
message buffer data in each communication cycle. Each node
transmits its critical data on both channels in every communication
cycle.

• In communication cycle 4, node A has updated message buffer 5 to
send a diagnostics request to node D on channel A. So, node A
transmits the message in slot 10 in the dynamic segment.

• In communication cycle 52, node D has updated message buffer 2 to
send a diagnostics message to node A on channel A. So, node D
transmits the message in slot 10 in the dynamic segment. Assuming
that node D always updates its message buffer in time, node A can
expect a predictable latency (48 communication cycles) between
sending its diagnostic request message to node and receiving the reply
from node D.

 WHITE PAPER FlexRay Message Buffers Page 17

time

Every communication cycle without dynamic segment transmission:

1 2 3 4

static slots minislots symbol window NIT

10 11 12 13 14 15 16
Channel A

1 2 3 4

static slots minislots symbol window NIT

10 11 12 13 14 15 16
Channel B

5 6 7 8 9

5 6 7 8 9

Nodes update
message buffers:

b1

B1

c1

C1

d1

D1

e1

E1

b1 c1 d1 e1

Communication cycle 4:

1 2 3 4

static slots minislots symbol window NIT

10
11 12 13 14 15 16

Channel A

1 2 3 4

static slots minislots symbol window NIT

10 11 12 13 14 15 16
Channel B

5 6 7 8 9

5 6 7 8 9

Nodes update
message buffers:

b1

B1

c1

C1

d1

D1

e1

E1

b1 c1 d1 e1

a5

A5

Communication cycle 52:

1 2 3 4

static slots minislots symbol window NIT

10
11 12 13 14 15 16

Channel A

1 2 3 4

static slots minislots symbol window NIT

10 11 12 13 14 15 16
Channel B

5 6 7 8 9

5 6 7 8 9

Nodes update
message buffers:

b1

B1

c1

C1

d1

D1

e1

E1

b1 c1 d1 e1

d2

D2

Figure 4. FlexRay Message Transmit Example

 WHITE PAPER FlexRay Message Buffers Page 18

RECEIVE MESSAGE BUFFER SETUP
Message reception (protocol to host) operates on non-queued buffers and
queued buffers. A non-queued receive message buffer is defined in the
specification as having the following characteristics:

• Host has read access to receive message buffer data.

• Protocol has write access to receive message buffer data.

• New data replaces old data in the message buffer.

A queued receive message buffer has the following characteristics:

• Host has read access to receive message buffer data.

• Protocol has write access to receive message buffer data.

• New data is queued behind previous data in the message buffer.

The queued receive message buffer is otherwise known as a receive FIFO
and is discussed later in this article.

Like the transmit buffer, the implementation of a receive message buffer
consists of two parts:

• Storage for the required message buffer configuration, control, and
status data, typically implemented as host-accessible registers in the
CHI.

• A region of shared memory allocated to the message buffer, the size of
which depends on the maximum payload size of the message buffer.
The shared memory stores the message header, payload data, and
(typically) the slot status.

The basic configuration data for a receive message buffer includes:

• Frame ID: Determines which slot the receive message buffer is
subscribed to. An incoming valid frame passes the Frame ID filter
check if it is received in a communication slot equal to the configured
Frame ID for the specific receive message buffer. Whether the
specified slot number is a static or dynamic slot depends on how many
static slots are configured.

• Channel: Determines which channel(s) the receive message buffer is
subscribed to. For static slots, a receive message buffer can be
assigned to channel A or channel B or channels A and B. For dynamic
slots, a receive message buffer can be assigned to channel A or B, but
not both A and B.

 WHITE PAPER FlexRay Message Buffers Page 19

• Cycle count: Determines which communication cycle the receive
message buffer is subscribed to.

For each receive buffer, the CHI must also provide a means for the host to
access the following control and status information:

• Data valid: An indication from the host that the receive message buffer
contains valid data.

• Slot status: A set of specification-defined slot status bits made available
to the host from the CHI.

Other configuration information that may be implemented by a CHI includes:

• Message ID: In the dynamic segment, Message ID filtering can also be
applied to incoming valid frames.

• Pointer to the location of the message header and payload data in the
shared memory.

Returning to the example cluster shown in Figure 1, node A needs:

• Four receive buffers assigned to the static segment to receive the
critical data from nodes B, C, D, and E

• Eight receive buffers assigned to the dynamic segment to receive
diagnostics data from nodes B, C, D, and E (channels A and B)

Nodes B, C, D, and E each need:

• One receive buffer assigned to the dynamic segment to receive
diagnostics request messages from node A on channel A

• One receive buffer assigned to the dynamic segment to receive
diagnostics request messages from node A on channel B

Table 2 shows an example of the receive message buffer configuration for
the cluster to match the transmit message buffer configuration established in
Table 1.

 WHITE PAPER FlexRay Message Buffers Page 20

Table 2. Receive Message Buffer Setup

Node A Node B Node C Node D Node E MB
No.

Frame ID: 1
Channel: A and B
Purpose: Receive

periodic critical
data from node B

Frame ID: 10
Channel: A

Com. Cycle: 2
Purpose: Receive

channel A
diagnostics request

message from
node A

Frame ID: 10
Channel: A

Com. Cycle: 3
Purpose: Receive

channel A
diagnostics request

message from
node A

Frame ID: 10
Channel: A

Com. Cycle: 4
Purpose: Receive

channel A
diagnostics request

message from
node A

Frame ID: 10
Channel: A

Com. Cycle: 5
Purpose: Receive

channel A
diagnostics request

message from
node A

1

Frame ID: 2
Channel: A and B
Purpose: Receive

periodic critical
data from node C

Frame ID: 10
Channel: B

Com. Cycle: 2
Purpose: Receive

channel B
diagnostics request

message from
node A

Frame ID: 10
Channel: B

Com. Cycle: 3
Purpose: Receive

channel B
diagnostics request

message from
node A

Frame ID: 10
Channel: B

Com. Cycle: 4
Purpose: Receive

channel B
diagnostics request

message from
node A

Frame ID: 10
Channel: B

Com. Cycle: 5
Purpose: Receive

channel B
diagnostics request

message from
node A

2

Frame ID: 3
Channel: A and B
Purpose: Receive

periodic critical
data from node D

Not Used Not Used Not Used Not Used 3

Frame ID: 4
Channel: A and B
Purpose: Receive

periodic critical
data from node E

Not Used Not Used Not Used Not Used 4

Frame ID: 10
Channel: A

Com. Cycle: 50
Purpose: Receive

channel A
diagnostics data
message from

node B

Not Used Not Used Not Used Not Used 5

6

Frame ID: 10
Channel: B

Com. Cycle: 50
Purpose: Receive

channel B
diagnostics data
message from

node B

Not Used Not Used Not Used Not Used

 WHITE PAPER FlexRay Message Buffers Page 21

Table 2. Receive Message Buffer Setup
MB
No. Node A Node B Node C Node D Node E

Frame ID: 10
Channel: A

Com. Cycle: 51
Purpose: Receive

channel A
diagnostics data
message from

node C

Not Used Not Used Not Used Not Used 7

Frame ID: 10
Channel: B

Com. Cycle: 51
Purpose: Receive

channel B
diagnostics data
message from

node C

Not Used Not Used Not Used Not Used 8

Frame ID: 10
Channel: A

Com. Cycle: 52
Purpose: Receive

channel A
diagnostics data
message from

node D

Not Used Not Used Not Used Not Used 9

Frame ID: 10
Channel: B

Com. Cycle: 52
Purpose: Receive

channel B
diagnostics data
message from

node D

Not Used Not Used Not Used Not Used 10

Frame ID: 10
Channel: A

Com. Cycle: 53
Purpose: Receive

channel A
diagnostics data
message from

node E

Not Used Not Used Not Used Not Used 11

12

Frame ID: 10
Channel: B

Com. Cycle: 53
Purpose: Receive

channel B
diagnostics data
message from

node E

Not Used Not Used Not Used Not Used

 WHITE PAPER FlexRay Message Buffers Page 22

MESSAGE RECEPTION
The receiving node places the incoming valid frame into the corresponding
message buffer if it passes all of the specified filtering criteria for that
message buffer, such as:

• Frame ID filter

• Channel filter

• Cycle count filter

• Message ID filter (in the dynamic segment only)

To temporarily store a frame while it is checked and filtered, a receiving node
may implement one or more so-called shadow buffers. The shadow buffer
stores the frame until the frame has passed validity checking and filtering
and is assigned to a specific message buffer, at which time the slot status is
updated and the application is notified that the receive message buffer now
contains a valid frame. The application can then read the message from the
shared memory.

The shadow buffer is an
implementation-specific
concept, not explicitly
defined in the FlexRay
specification.

In the FRCC2100, the data transfer from the shadow buffer to the actual
receive message buffer is accomplished by switching the pointers (memory
indexes) of the shadow buffer and the receive message buffer, saving the
memory read/write cycles that would otherwise be required to move the data.

RECEIVE FIFO
To accept frames that are valid but are not assigned to a specific non-
queued message buffer, a node may implement a receive FIFO. A receive
FIFO also typically consists of a set of configuration, control, and status
registers in the CHI and a designated region of shared memory to store the
incoming frames that pass the filter criteria configured for the receive FIFO.

Configuration and control data for a receive FIFO can include filter setup
such as Frame ID filtering or Message ID filtering in the dynamic segment.
FIFO status from the Controller to the application typically includes index
pointers and empty/full status.

 WHITE PAPER FlexRay Message Buffers Page 23

MESSAGE BUFFER LOCKING
With both the application and the FlexRay Communication Controller
accessing the message buffer data in the shared memory, it is important to
avoid read/write conflicts:

• The Controller should not read from a transmit message buffer while
the application is writing to it.

• Similarly, the application should not read from a receive message buffer
while the Controller is writing to it.

The Controller’s access to the message buffer data is generally a function of
the FlexRay timing. For example, if a transmit message buffer has Frame ID
3, the Controller will transmit the message buffer in slot 3 and therefore need
to access the message buffer data in the shared memory at that time. By
monitoring the current slot number and communication cycle number, the
application can time its access to avoid shared memory access conflicts. In
addition, the Controller should implement a scheme to allow the application
and the Controller to lock message buffers on an individual basis during their
respective access times.

To allow concurrent host/protocol access to a transmit message buffer, the
FRCC2100 offers the option of setting up the transmit message buffer as a
type of queued buffer, basically a FIFO with a depth of 2. This allows the
application to write to one side of the transmit message buffer while the
protocol reads from the other side.

INTERRUPTS
Interrupts provide a convenient mechanism to alert the host to changes in
message buffer status such as:

• Frame transmitted

• Frame received

• Receive FIFO status

The application can then read the message buffer status registers in the
controller to acquire additional information, and respond accordingly.

 WHITE PAPER FlexRay Message Buffers Page 24

SUMMARY
Message buffers provide a convenient mechanism to de-couple the
operation of the application in a FlexRay node from the real-time activity on
the FlexRay bus. The host view of the FlexRay communication is the
exchange of FlexRay frames between the application and the shared
memory associated with the message buffers, and the setup and monitoring
of the associated configuration/control/status data.

The FlexRay specification imposes a set of requirements on the message
data interface services that the CHI block in a FlexRay Communication
Controller must provide. However, the specific message buffer
implementation and the host interaction with the message buffers can vary
between FlexRay Communication Controllers from different providers.
Understanding the fundamentals of the FlexRay bus timing and the
correlation between message buffers and FlexRay communication slots is an
important step in the planning of a FlexRay node or network and choosing
the FlexRay Communication Controller that is best suited to your application
needs.

IPextreme, Inc.
307 Orchard City Drive
M.S. 202
Campbell, CA 95008
800-289-6412 (toll-free)
408-608-0421 (fax)

THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS
OR IMPLIED WARRANTIES OF ANY KIND. INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE.

© Copyright 2006, IPextreme. All rights reserved. IPextreme and the IPextreme logo are trademarks of IPextreme, Inc. All other
trademarks are the property of their respective owners.

 www.ip-extreme.com

	ABSTRACT
	TABLE OF CONTENTS
	 STRUCTURE OF A TYPICAL FLEXRAY NODE
	REVIEW OF FLEXRAY TIMING HIERARCHY
	Communication Cycle
	Static Segment
	Dynamic Segment
	Symbol Window
	Network Idle Time (NIT)
	Time Units
	Frame ID

	MESSAGE BUFFER OVERVIEW
	TRANSMIT MESSAGE BUFFER SETUP
	MESSAGE TRANSMISSION
	RECEIVE MESSAGE BUFFER SETUP
	MESSAGE RECEPTION
	RECEIVE FIFO
	MESSAGE BUFFER LOCKING
	INTERRUPTS
	SUMMARY

